We’re rounding out bio/biochem for Blueprint MCAT (formerly Next Step Test Prep) full-length 10 and we’re in for a great passage to help us with our skills.
Ketone bodies are molecules that are produced by the liver during times of low glucose levels. [Figure 1 is talking about the structures of the three naturally occurring ketone bodies in humans – acetone, acetoacetic acid, and beta-hydroxybutyric acid] These ketone bodies are synthesized from acetyl-CoA.
Normally in the liver, acetyl-CoA enters the Krebs cycle. However, if there is a lack of oxaloacetate or an overabundance of acetyl-CoA released from beta-oxidation of fatty acids, then the acetyl-CoA will be built in the ketone bodies via ketogenesis.
If acetoacetate is not used within about five hours of its creation, it would be decarboxylated into a metabolically inert ketone. Acetyl acetate and beta-hydroxy butyryl dehydrogenase are picked up from the liver and transported to other parts of the body where they can be converted back into acetyl-CoA and enter the Krebs cycle.
The brain and heart are the biggest consumers of ketone bodies as the source of energy. The state of higher than normal ketone body levels is known as ketosis. Significantly high levels of ketone bodies will lower a blood pH, a condition known as ketoacidosis.
Which of the following best explains why high blood levels of ketone bodies lower blood pH?
Clara’s insights:
Lower PKA corresponds to something more acidic just like a lower pH is more acidic. Answer choice A would have been backward as PKA above would be less acidic. Then B and C may look tempting as they involved acid in some way but we don’t need to know that kind of detail about ketone body production. So the answer here is D.
Would a person with diabetes be at a greater risk of developing ketoacidosis?
Clara’s insights:
You may not know what abundance of glucose in the blood would do but you can kind of guess what it will do in cells. Glucose in the blood doesn’t really do anything. And we picture all these processes just happening but they actually have to happen in cells. So the abundance of glucose in the blood is in no way will directly result in higher acetyl-CoA levels because glucose would need to be in the cells for it to go through glycolysis and make pyruvate to progress into the Krebs cycle. So A is the correct answer.
Based on the passage, what is the most likely path for removal of acetone produced in Figure 1.
III. Involved in anabolism of amino acids
Clara’s insights:
When you say III, it means it’s used as a building block for amino acids so that’s not right. Then the conversion back to acetyl acetate, it doesn’t necessarily say that acetone comes from acetyl acetate. So the correct answer here is I only.
The passage doesn’t directly don’t talk about acetone but it alludes to it in a way we can figure out what it’s talking about. So if you actually look back at paragraph 3, it says “If acetoacetate is not used within about five hours of its creation, it would be decarboxylated into a metabolically inert ketone.” Acetone is a ketone. Acetoacetate is a pretty small molecule where essentially the only ketone you get from it is acetone. So when they say metabolically inert ketone, the obvious identity for that is acetone. And if it’s metabolically inert, it doesn’t really do anything in metabolism and we just excrete it out.
And amino acids are small, like individual monomeric building blocks. We wouldn’t imagine like a ketone body would be used to build those tiny little amino acids anyway.
Check out Blueprint MCAT (formerly Next Step Test Prep) for their one-on-one tutoring and online course, their full-length exams, and all other resources they have to offer. Use the promo code MCATPOD to save some money.
Lorem ipsum dolor sit amet, consectetur adipiscing elit
I just received my admission to XXXXX! This is unreal and almost feels like I am dreaming. I want to thank you for all of your help with my application. I cannot overstate how influential your guidance and insight have been with this result and I am eternally grateful for your support!
IM SO HAPPY!!!! THANK YOU SO MUCH FOR ALL YOUR HELP, IM INDEBTED TO YOU! Truly, thank you so much for all your help. Thank you doesnt do enough.
I want to take a few moments and thank you for all of your very instructive, kind and consistent feedback and support through my applications and it is your wishes, feedback, and most importantly your blessings that have landed me the acceptance!
I got into XXXXX this morning!!!! It still has not hit me that I will be a doctor now!! Thank you for all your help, your words and motivation have brought me to this point.
I wanted to once again express my heartfelt gratitude for your help in providing feedback during my secondary applications. Your guidance has been instrumental in my journey.
Just wanted to share my wonderful news! I received my first medical school acceptance! Thank you for all that you do for us Application Academy!!!
I am excited to tell you that I just got my third interview invite from XXXXX today! I can’t believe it. I didn’t even know if I was good enough to get one, let alone three – by mid-September. Thank you so much for all of your help and support up to this point; I would not be in this position without it!!
I wanted to thank you for helping me prepare for my XXXXX interview. Even in a 30-minute advising session, I learned so much from you. Thank you for believing in me, and here’s to another potential success story from one of your advisees!
I just received an acceptance with XXXXX! This is so exciting and such a huge relief and so nice to have one of our top choice schools! I also received an interview with XXXXX which brings the total up to 20 interviews! Thank so much, none of this would have been possible without you!
Join our newsletter to stay up to date
* By subscribing you agree to with our Privacy Policy and provide consent to receive updates from our company.
Resources
Advising Services
Podcasts & Youtube
Books
About
"*" indicates required fields